sgRNAcas9: A Software Package for Designing CRISPR sgRNA and Evaluating Potential Off-Target Cleavage Sites
نویسندگان
چکیده
Although the CRISPR/Cas9/sgRNA system efficiently cleaves intracellular DNA at desired target sites, major concerns remain on potential "off-target" cleavage that may occur throughout the whole genome. In order to improve CRISPR-Cas9 specificity for targeted genome editing and transcriptional control, we describe a bioinformatics tool "sgRNAcas9", which is a software package developed for fast design of CRISPR sgRNA with minimized off-target effects. This package consists of programs to perform a search for CRISPR target sites (protospacers) with user-defined parameters, predict genome-wide Cas9 potential off-target cleavage sites (POT), classify the POT into three categories, batch-design oligonucleotides for constructing 20-nt (nucleotides) or truncated sgRNA expression vectors, extract desired length nucleotide sequences flanking the on- or off-target cleavage sites for designing PCR primer pairs to validate the mutations by T7E1 cleavage assay. Importantly, by identifying potential off-target sites in silico, the sgRNAcas9 allows the selection of more specific target sites and aids the identification of bona fide off-target sites, significantly facilitating the design of sgRNA for genome editing applications. sgRNAcas9 software package is publicly available at BiooTools website (www.biootools.com) under the terms of the GNU General Public License.
منابع مشابه
CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif
Designing efficient and specific CRISPR single-guide RNAs (sgRNAs) is vital for the successful application of CRISPR technology. Currently, a growing number of new RNA-guided endonucleases with a different protospacer adjacent motif (PAM) have been discovered, suggesting the necessity to develop a versatile tool for designing sgRNA to meet the requirement of different RNA-guided DNA endonucleas...
متن کاملCorrection: CRISPR MultiTargeter: A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of Similar Sequences
Genome engineering has been revolutionized by the discovery of clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated system genes (Cas) in bacteria. The type IIB Streptococcus pyogenes CRISPR/Cas9 system functions in many species and additional types of CRISPR/Cas systems are under development. In the type II system, expression of CRISPR single guide RNA (sgRNA) tar...
متن کاملCRISPRseek: A Bioconductor Package to Identify Target-Specific Guide RNAs for CRISPR-Cas9 Genome-Editing Systems
CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at th...
متن کاملCRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
CRISPR/Cas9 systems are a versatile tool for genome editing due to the highly efficient targeting of DNA sequences complementary to their RNA guide strands. However, it has been shown that RNA-guided Cas9 nuclease cleaves genomic DNA sequences containing mismatches to the guide strand. A better understanding of the CRISPR/Cas9 specificity is needed to minimize off-target cleavage in large mamma...
متن کاملHow to design gene disruption experiments using the Alt-RTM CRISPR-Cas9 System
Use of the CRISPR (clustered regularly interspaced short palindromic repeats) and associated Cas9 enzyme for genome editing has been a major technological breakthrough, making genome modification in cells or organisms faster, more efficient, and more robust than previous genome editing methods. The Alt-RTM CRISPR-Cas9 System is an optimized genome editing solution that outperforms other CRISPR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014